Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 26(2): 379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37456170

RESUMO

Sepsis-related acute kidney injury (S-AKI) is a common and significant complication of sepsis in critically ill patients, which can often only be treated with antibiotics and medications that reduce S-AKI symptoms. The precise mechanism underlying the onset of S-AKI is still unclear, thus hindering the development of new strategies for its treatment. Therefore, it is necessary to explore the pathogenesis of S-AKI to identify biomarkers and therapeutic targets for its early diagnosis and treatment. Heparanase (HPA), the only known enzyme that cleaves the side chain of heparan sulfate, has been widely studied in relation to tumor metabolism, procoagulant activity, angiogenesis, inflammation and sepsis. It has been reported that HPA plays an important role in the progression of S-AKI. The aim of the present review was to provide an overview of the function of HPA in S-AKI and to summarize its underlying molecular mechanisms, including mediating inflammatory response, immune response, autophagy and exosome biogenesis. It is anticipated that emerging discoveries about HPA in S-AKI will support HPA as a potential biomarker and therapeutic target to combat S-AKI.

2.
Curr Cancer Drug Targets ; 19(11): 854-862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250756

RESUMO

Src homolog and collagen homolog (Shc) proteins have been identified as adapter proteins associated with cell surface receptors and have been shown to play important roles in signaling and disease. Shcbp1 acts as a Shc SH2-domain binding protein 1 and is involved in the regulation of signaling pathways, such as FGF, NF-κB, MAPK/ERK, PI3K/AKT, TGF-ß1/Smad and ß -catenin signaling. Shcbp1 participates in T cell development, the regulation of downstream signal transduction pathways, and cytokinesis during mitosis and meiosis. In addition, Shcbp1 has been demonstrated to correlate with Burkitt-like lymphoma, breast cancer, lung cancer, gliomas, synovial sarcoma, human hepatocellular carcinoma and other diseases. Shcbp1 may play an important role in tumorigenesis and progression. Accordingly, recent studies are reviewed herein to discuss and interpret the role of Shcbp1 in normal cell proliferation and differentiation, tumorigenesis and progression, as well as its interactions with proteins.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Animais , Ciclo Celular , Proliferação de Células , Progressão da Doença , Humanos , Mitose , Neoplasias/genética , Neoplasias/metabolismo
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(1): 21-27, 2019 Feb 28.
Artigo em Chinês | MEDLINE | ID: mdl-30837038

RESUMO

Objective To observe the effect of low-frequency pulsed electromagnetic fields(PEMFs) on bone formation in rat osteoblasts(ROBs) and explore the mechanism of action of the cyclic adenosine monophosphate(cAMP)/protein kinase A(PKA)/cyclic adenosine effect binding protein(CREB) signaling pathway.Methods The skulls of newborn Wistar rats were harvested,and the ROBs were obtained by multiple enzymatic digestion methods for subculture. After treatment with 50 Hz 0.6 mT PEMFs for 3,6,and 9 days,the alkaline phosphatase(ALP) concentration in ROBs was detected;after 0,15,30,60,90,and 120 min,the expression of bone formation-related factor(RUNX2),the protein expression of osteogenesis-associated transcription factor(OSX),the cAMP concentration,as well as the protein expressions of p-PKA,p-CREB,and CREB were detected. The p-CREB nuclear translocation was observed. After interference with IFT88 by RNA interference,the expressions of RUNX2,OSX,p-PKA,and p-CREB protein in ROBs were detected.Results After treatment with PEMFs for 3,6,and 9 days,the ALP activity values in ROBs were 24.356±4.911,37.688±2.151,and 39.922±5.486,respectively,which were significantly higher than 18.531±2.401(P=0.0121),33.675±4.366(P=0.0324),and 36.574±1.339(P=0.0134) in the control groups. RUNX2 and OSX activities in ROBs were significantly higher than untreated group after PEMFs treatment for 30(P=0.0042 and P=0.0058),60(P=0.0097 and P=0.0079),and 90 min(P=0.0083 and P=0.0098). After PEMFs treatment for 30(P=0.0012) and 60 min(P=0.0035),the cAMP concentrations in ROBs were significantly higher than that in untreated group. After PEMFs treatment for 15(P=0.0018),30(P=0.0087),90(P=0.0250),and 120 min(P=0.0350),the p-PKA levels in ROBs were significantly higher than that in the untreated group. After PEMFs treatment for 15(P=0.0075),30(P=0.0017),60(P=0.0074),and 90 min(P=0.0096),the level of p-CREB in the ROBs was significantly higher than in the untreated group. After PEMFs treatment of ROBs for 15 min,CREB phosphorylated and accumulated in the nuclei. PKA and p-PKA were co-localized with primary cilia and stained,and it was found that p-PKA was localized on the primary cilia. After the primary cilia was removed by RNA interference,the protein expression levels of p-PKA(F=78.602,P=0.0270),p-CREB(F=76.082,P=0.0089),RUNX2(F=41.064,P=0.0230) and OSX(F=57.524,P=0.0310) were significantly lower than those of the non-interfered group.Conclusion PEMFs promote bone formation in ROBs by activating the primary cilia-associated cAMP/PKA/CREB signaling pathway.


Assuntos
Campos Eletromagnéticos , Osteogênese , Animais , Proteínas Quinases Dependentes de AMP Cíclico , Osteoblastos , Ratos , Ratos Wistar
4.
J Cell Physiol ; 234(3): 2807-2821, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30067871

RESUMO

The application of pulsed electromagnetic fields (PEMFs) in the prevention and treatment of osteoporosis has long been an area of interest. However, the clinical application of PEMFs remains limited because of the poor understanding of the PEMF action mechanism. Here, we report that PEMFs promote bone formation by activating soluble adenylyl cyclase (sAC), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) signaling pathways. First, it was found that 50 Hz 0.6 millitesla (mT) PEMFs promoted osteogenic differentiation of rat calvarial osteoblasts (ROBs), and that PEMFs activated cAMP-PKA-CREB signaling by increasing intracellular cAMP levels, facilitating phosphorylation of PKA and CREB, and inducing nuclear translocation of phosphorylated (p)-CREB. Blocking the signaling by adenylate cyclase (AC) and PKA inhibitors both abolished the osteogenic effect of PEMFs. Second, expression of sAC isoform was found to be increased significantly by PEMF treatment. Blocking sAC using sAC-specific inhibitor KH7 dramatically inhibited the osteogenic differentiation of ROBs. Finally, the peak bone mass of growing rats was significantly increased after 2 months of PEMF treatment with 90 min/day. The serum cAMP content, p-PKA, and p-CREB as well as the sAC protein expression levels were all increased significantly in femurs of treated rats. The current study indicated that PEMFs promote bone formation in vitro and in vivo by activating sAC-cAMP-PKA-CREB signaling pathway of osteoblasts directly or indirectly.


Assuntos
Inibidores Enzimáticos/farmacologia , Magnetoterapia , Osteogênese/efeitos da radiação , Osteoporose/terapia , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/genética , Adenilil Ciclases/farmacologia , Animais , Densidade Óssea/efeitos da radiação , Diferenciação Celular/efeitos da radiação , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Animais de Doenças , Fêmur/crescimento & desenvolvimento , Fêmur/patologia , Fêmur/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Osteoblastos/efeitos da radiação , Osteoporose/genética , Osteoporose/patologia , Ratos , Transdução de Sinais/efeitos da radiação
5.
Acta Pharmacol Sin ; 39(11): 1760-1767, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29891857

RESUMO

Bone loss induced by microgravity is a substantial barrier to humans in long-term spaceflight. Recent studies have revealed that icariin (ICA) can attenuate osteoporosis in postmenopausal women and ovariectomized rats. However, whether ICA can protect against microgravity-induced bone loss remains unknown. In this study, the effects of ICA on a hindlimb suspension rodent model were investigated. Two-month-old female Wistar rats were hindlimb suspended and treated with ICA (25 mg·kg-1·d-1, i.g.) or a vehicle for 4 weeks (n = 6). The bone mass density of the hindlimbs was analyzed using dual-energy X-ray absorptiometry and micro-CT. mRNA expression of osteogenic genes in the tibia and the content of bone metabolism markers in serum were measured using qRT-PCR and ELISA, respectively. The bone mineral phase was analyzed using X-ray diffraction and atomic spectrometry. The results showed that ICA treatment significantly rescued the hindlimb suspension-induced reduction in bone mineral density, trabecular number and thickness, as well as the increases in trabecular separation and the structure model index. In addition, ICA treatment recovered the decreased bone-related gene expression, including alkaline phosphatase (ALP), bone glaprotein (BGP), and osteoprotegerin/receptor activator of the NF-κB ligand ratio (OPG/RANKL), in the tibia and the decreased bone resorption marker TRACP-5b levels in serum caused by simulated microgravity. Notably, ICA treatment restored the instability of bone biological apatite and the metabolic disorder of bone mineral elicited by simulated microgravity. These results demonstrate that ICA treatment plays osteoprotective roles in bone loss induced by simulated microgravity by inhibiting bone resorption and stabilizing bone biological apatite.


Assuntos
Apatitas/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/prevenção & controle , Flavonoides/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Elevação dos Membros Posteriores , Metais Leves/metabolismo , Ratos Wistar
6.
Biomed Environ Sci ; 31(2): 126-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29606191

RESUMO

OBJECTIVE: To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms. METHODS: Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats. RESULTS: Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-5b) in serum was in line with the changes in trabecular parameters. CONCLUSION: Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.


Assuntos
Reabsorção Óssea/etiologia , Ritmo Ultradiano , Simulação de Ausência de Peso/efeitos adversos , Raios X/efeitos adversos , Animais , Fenômenos Biomecânicos , Densidade Óssea/fisiologia , Reabsorção Óssea/metabolismo , Fêmur/metabolismo , Elevação dos Membros Posteriores , Ratos Sprague-Dawley , Tíbia/metabolismo
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(11): 1508-1513, 2016 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-27881341

RESUMO

OBJECTIVE: To study whether low-frequency pulsed electromagnetic fields promotes the differentiation of cultured rat osteoblasts through the cAMP/PKA signal pathway. METHODS: Rat calvarial osteoblasts isolated by enzyme digestion were exposed to 50 Hz 0.6 mT low-frequency pulsed electromagnetic field for varying lengths of time, and the concentration of cAMP and levels of phosphorylated PKA in the cells were assayed. In cells treated with DDA to inhibit the activity of adenylate cyclase, the changes of ALP activity and transcription of osteogenic gene were detected after exposure to low-frequency pulsed electromagnetic field. The changes of osteogenic gene transcription and protein expression were tested in the osteoblasts pretreated with KT5720 in response to low-frequency pulsed electromagnetic field exposure. RESULTS: The intracellular cAMP concentration in the cells increased significantly at 20 min during exposure to low-frequency pulsed electromagnetic field, began to decrease at 40 min during the exposure, and increased again after a 2-h exposure; the same pattern of variation was also observed in p-PKA level. Application of DDA and KT5720 pretreatment both suppressed the increase in ALP activity and osteogenic gene transcription induced by electromagnetic field exposure. CONCLUSION: Low- frequency pulsed electromagnetic field exposure improves the differentiation of cultured rat osteoblasts by activating cAMP/PKA signal pathway.


Assuntos
Diferenciação Celular , Campos Eletromagnéticos , Osteoblastos/citologia , Transdução de Sinais , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Osteogênese , Ratos
8.
Bone ; 93: 22-32, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622883

RESUMO

Pulsed electromagnetic fields (PEMFs) have been considered as a potential candidate for the prevention and treatment of osteoporosis, however, the mechanism of its action is still elusive. We have previously reported that 50Hz 0.6mT PEMFs stimulate osteoblastic differentiation and mineralization in a primary cilium- dependent manner, but did not know the reason. In the current study, we found that the PEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) by activating bone morphogenetic protein BMP-Smad1/5/8 signaling on the condition that primary cilia were normal. Further studies revealed that BMPRII, the primary binding receptor of BMP ligand, was readily and strongly upregulated by PEMF treatment and localized at the bases of primary cilia. Abrogation of primary cilia with small interfering RNA sequence targeting IFT88 abolished the PEMF-induced upregulation of BMPRII and its ciliary localization. Knockdown of BMPRII expression level with RNA interference had no effects on primary cilia but significantly decreased the promoting effect of PEMFs on osteoblastic differentiation and maturation. These results indicated that PEMFs stimulate osteogenic differentiation and maturation of osteoblast by primary cilium-mediated upregulation of BMPRII expression and subsequently activation of BMP-Smad1/5/8 signaling, and that BMPRII is the key component linking primary cilium and BMP-Smad1/5/8 pathway. This study has thus revealed the molecular mechanism for the osteogenic effect of PEMFs.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diferenciação Celular , Cílios/metabolismo , Campos Eletromagnéticos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Regulação para Cima , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(2): 164-8, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27263287

RESUMO

OBJECTIVE: To establish a collagen hydrogel three-dimensional culture model with rat calvarial osteoblasts (ROBs). METHODS: ROBs were obtained through enzyme digestion of segregated neonatal SD rat skull. The collagen hydrogel three-dimensional culture model was established by mixing ROBs with different concentrations of type I rat tail collagen (collagen concentration of 1, 2, 3 mg/mL), DMEM medium and NaOH under adjusted PH and a temperature of 37 degrees C. Cell viability and activity were detected by FDA/PI staining and CCK-8 3 d after cell culture. The optimal culture method of 3D collagen hydrogel was identified. Cell distribution was observed using scanning electron microscopy and HE staining. RESULTS: ROBs collagen was formed firmly at 2 mg/mL, which had significantly higher levels of cell viability and activity than those at 1 mg/mL and 3 mg/mL. Scanning electron microscopy and HE staining showed that cells under the 2 mg/mL collagen culture system adhered with collagen tightly and distributed homogeneously. CONCLUSION: A collagen hydrogel 3D culture model was established successfully by mixing ROBs with collagen at 2 mg/mL.


Assuntos
Técnicas de Cultura de Células , Colágeno Tipo I/química , Hidrogéis/química , Osteoblastos/citologia , Animais , Sobrevivência Celular , Ratos , Ratos Sprague-Dawley , Crânio/citologia
10.
Electromagn Biol Med ; 35(1): 75-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25333898

RESUMO

Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.


Assuntos
Reabsorção Óssea/terapia , Campos Eletromagnéticos , Fêmur/efeitos da radiação , Magnetoterapia , Osteogênese/efeitos da radiação , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Fêmur/metabolismo , Fêmur/fisiologia , Fêmur/fisiopatologia , Regulação da Expressão Gênica/efeitos da radiação , Glucose/metabolismo , Isoenzimas/metabolismo , Ácido Láctico/metabolismo , Masculino , Osteogênese/genética , Ratos , Ratos Wistar , Fosfatase Ácida Resistente a Tartarato
11.
Zhongguo Gu Shang ; 28(9): 832-7, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26647566

RESUMO

OBJECTIVE: To investigate osthole effect on femoral tissue resorption activity of rat in vitro. METHODS: Six SD rats weighted (80 ± 5) g were used to isolate and culture femoral tissue (diaphyses and metaphysis) in vitro. The cultured tissue were devided into control group, estradiol group and osthole group. The femoral tissue was treated with final concentration of 1 x 10(-5) mol/L osthole and 1 x 10(-8) mol/L estradiol culture in vitro at 48 hours after cultured. Tartrate-resistant acid phosphatase (StrACP) activity, glucose and Lactic acid content, StrACP, MCSF (Macrophage colony stimulating factor) and CTSK (Cathepsin K) mRNA was detected by Real-Time RT-PCR were detected. RESULTS: Concetration of Alkaline phosphatase activity were 2226 and 2498 in 1 x 10(-5) mol/L osthole and 1 x 10(-8) mol/L estradiol respectively. As compared with control group, the activity of StrACP of 1 x 10(-5) mol/L osthole and 1 x 10(-8) mol/L estradiol were inhibited at 6, 9, 12 days (P < 0.05); under treatment of in l x 10(-5) mol/L osthole, the content of Lactic acid were increased and the content of glucose were decreased at 3, 6, 9 days (P < 0.05); StrACP, MCSF and CTSK mRNA expression level were inhibited at 6, 9 days (P < 0.05). CONCLUSION: Osthole can inhibit bone resorption and raise the level of nutrition metabolism of femurs tissue.


Assuntos
Reabsorção Óssea/prevenção & controle , Cumarínicos/farmacologia , Fêmur/efeitos dos fármacos , Fosfatase Ácida/metabolismo , Animais , Estradiol/farmacologia , Glucose/análise , Ácido Láctico/análise , Masculino , Ratos , Ratos Sprague-Dawley
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 44(3): 301-7, 2015 05.
Artigo em Chinês | MEDLINE | ID: mdl-26350011

RESUMO

OBJECTIVE: To investigate the effects of icariin on the differentiation and maturation of rat calvarial osteoblasts(ROB) in collagen hydrogel three-dimensional culture. METHODS: ROB were obtained by enzyme digestion from the segregated neonatal SD rats skull and were embedded in 2 mg/mL rat tail collagen for three-dimensional culture. The growth state of ROB was observed by FDA/PI staining, HE staining and scanning electron microscopy. ROB were treated with icariin at the concentration of 1 × 10⁻4, 1 × 10⁻5, 1 × 10⁻6 and 1 × 10⁻7 mol/L respectively. The activity of alkaline phosphatase(ALP) was detected after 3, 6, 9 d of icariin treatment. Three-dimensional cultured ROB were treated with optimal concentration icariin for 12, 24, 36, 48 h and total RNA was extracted and the mRNA expressions of bone morphogenetic protein-2 (BMP-2), Runt-related transcription factor 2 (RUNX-2) and Osterix were detected by real time RT-PCR. The protein expression of BMP-2, RUNX-2 and Osterix were examined by Western-blotting. RESULTS: ROB were cultured in collagen hydrogel successfully. FDA/PI staining, HE staining, and scanning electron microscopy showed that ROB adhered with collagen tightly and distributed homogeneously. Icariin at final concentration of 1 × 10⁻5, 1 × 10⁻6 and 1×10⁻7 mol/L all enhanced the activity of ALP of collagen hydrogel three-dimensional cultured ROB, and 1 × 10⁻6 mol/L was the optimal concentration. Besides, icariin (1 × 10⁻6 mol/L) increased mRNA and protein expression of BMP-2、RUNX-2 and Osterix compared to control group. CONCLUSION: Icariin can enhance the expression of osteogenic markers of ROB in collagen hydrogel three-dimensional culture significantly.


Assuntos
Colágeno/química , Flavonoides/farmacologia , Hidrogéis/química , Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Medicamentos de Ervas Chinesas , Osteoblastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Crânio/citologia , Fatores de Transcrição/metabolismo
13.
Zhongguo Gu Shang ; 28(6): 547-52, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26255483

RESUMO

OBJECTIVE: To establish osteoblast model, primary cilla model was removed by chloral hyrate, observe effects of osteoblast primary cilla moved on enhancing ALP staining and calcified nodules staining in electromagnetic field. METHODS: Three 3-day-old male SD rats weighed between 6 and 9 g were killed, cranial osteoblast was drawed and adherencing cultured respectively. Cells were subcultured and randomly divided into 4 groups until reach to fusion states. The four groups included chloral hydrate non-involved group (control group), 2 mM, 4 mM and 8 mM chloral hydrate group, and cultured in 37 °C, 5% CO2 incubator for 72 h. Morphology of primary cilla was observed by laser confocal scanning microscope, and incidence of osteoblast primary cilia was analyzed by Image-Pro Plus 6.0 software. Cells in the correct concentration group which can removed cillia most effectively were selected and divided into 3 groups, including control group (C), Electromagnetic fields group (EMFs), and EMFs with 4 mM chloral hydrate group. DMEM nutrient solution contained 10%FBS were added into three groups and cultured for 9 days and formation of ALP were observed by histochemical staining of alkaline phosphatase. After 12 days' cultivation, formation of mineralization nodes was observed by alizarin red staining. RESULTS: Compared with control group and 2mM chloral hydrate group,4 mM chloral hydrate group could effectively remove osteoblast primary cilla (P<0.01). Removal of osteoblast primary cilla could weaken the formation of ALP and mineralization nodes in osteoblast in EMFS. Compared with EMFs group, the area of ALP and mineralization nodes in EMFs with 4 mM chloral hydrate group were decreased obviously (P<0.01). CONCLUSION: 4mM chloral hydrate could effectively remove osteoblast primary cilia. Primary cilla participate in EMFs promoting formation of ALP and mineralization nodes in osteoblast and provide new ideas for exploring mechanism of EMFs promoting osteoblast maturation and mineralization.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrato de Cloral/farmacologia , Cílios/fisiologia , Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Animais , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/enzimologia , Masculino , Osteoblastos/enzimologia , Ratos , Ratos Sprague-Dawley
14.
Mol Cell Endocrinol ; 404: 132-40, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25661534

RESUMO

Although pulsed electromagnetic fields (PEMFs) have been approved as a therapy for osteoporosis, action mechanisms and optimal parameters are elusive. To determine the optimal intensity, exposure effects of 50 Hz PEMFs of 0.6-3.6 mT (0.6 interval at 90 min/day) were investigated on proliferation and osteogenic differentiation of cultured calvarial osteoblasts. All intensity groups stimulated proliferation significantly with the highest effect at 0.6 mT. The 0.6 mT group also obtained the optimal osteogenic effect as demonstrated by the highest ALP activity, ALP(+) CFU-f colony formation, nodule mineralization, and expression of COL-1 and BMP-2. To verify our hypothesis that the primary cilia are the cellular sensors for PEMFs, osteoblasts were also transfected with IFT88 siRNA or scrambled control, and osteogenesis-promoting effects of 0.6 mT PEMFs were found abrogated when primary cilia were inhibited by IFT88 siRNA. Thus primary cilia of osteoblasts play an indispensable role in mediating PEMF osteogenic effect in vitro.


Assuntos
Calcificação Fisiológica , Magnetoterapia/instrumentação , Magnetoterapia/métodos , Osteoblastos/fisiologia , Osteogênese , Crânio/citologia , Fosfatase Alcalina , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cílios , Campos Eletromagnéticos , Técnicas In Vitro , Osteoblastos/citologia , Ratos , Proteínas Supressoras de Tumor/genética
15.
Zhongguo Zhong Yao Za Zhi ; 39(14): 2704-9, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25272500

RESUMO

OBJECTIVE: To investigate the estrogenic activity of icariin and genistein with estrogen-dependent human breast cancer (MCF-7) cells. METHOD: MCF-7 cells were incubated with media containing 5% charcoal dextran-treated FBS in phenol red-free media for 48 h. CCK-8 kit was used to study the impact of defferent concentration of icariin and genistein on MCF-7 proliferation in vitro. Optimal concentration icariin and genistein were added into medium and total RNA was isolated after 12, 24, 36, 48 h. The gene expression of ERalpha, ERbeta, PS2, and PR were investigated by Real-time RT-PCR Total protein was also isolated and secretion of ERalpha, ERbeta, PS2, and PR were examined by Western blot. RESULT: 10 micromol x L(-1) icariin and genistein could promote the proliferation of MCF-7 evidently. However, the ability of genistein to promote the proliferation was better than icariin. With the concentration of 10 micromol x L(-1), genistein group had a stronger expression of ERa, PS2 and PR mRNA levels than icariin while ERbetaexpression had no significant difference in two group. The same effects were detected by western blotting. CONCLUSION: Both genistein and icariin have a strong estrogen-like effect, but the estrogenic activity of genistein is stronger than icariin. It showed that the activity of icariin is stron-ger than genistein to promote ROB maturation. So it must be that icariin promotes the maturation of osteoblasts in vitro by a estogen-independent mechanism.


Assuntos
Flavonoides/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Humanos , Células MCF-7 , Osteoblastos/metabolismo , Presenilina-2/metabolismo
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 359-65, 2014 05.
Artigo em Chinês | MEDLINE | ID: mdl-24998662

RESUMO

The primary cilium is a solitary and special organelle that emanates from the cell surface of most mammalian cells, which is anchored to the cell by mother centriole during the interphase and G0 of cell cycle. Recent studies have revealed that the primary cilium is a sensory organelle to receive extracellular signals and plays a key role in the signal transduction and pathogenesis of diseases. This review presents the structure and the forming process of the primary cilium during cell cycle. The signal transductions associated with primary cilium, including platelet-derived growth factor receptor αα, hedgehog, Wnt are discussed and the relevant researches in the future are proposed.


Assuntos
Cílios/fisiologia , Transdução de Sinais/fisiologia , Humanos
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 35(5): 561-6, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24183047

RESUMO

OBJECTIVE: To investigate the effect of osthole on bone metabolism in rat femoral tissues in vitro. METHODS: The rat femoral tissues were isolated in vitro. The optimal concentrations of ostehole (1×10(-5) mol/L) and estradiol (1×10(-8) mol/L) (the positive control) were selected by alkaline phosphatase activity (ALP). The ALP and calcium levels were detected by commmerical regents, and the expressions of osteoprotegerin, receptor activator of nuclear factor-κB ligand, runx-related gene 2, and bone morphogenetic protein-2 mRNA were determined by real-time reverse transcription-polymerase chain reaction. RESULT: The osthole (1×10(-5) mol/L) significantly increased the activity of ALP, calcium level as well as the expressions of osteoprotegerin, receptor activator of nuclear factor-κB ligand, runx-related gene-2 and bone morphogenetic protein-2 mRNA in rat femoral tissues in vitro. CONCLUSION: Osthole can improve calcium level and ALP activity and regulate the bone metabolism-related genes in rat femoral tissues.


Assuntos
Cumarínicos/farmacologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Técnicas In Vitro , Masculino , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Planta Med ; 79(16): 1501-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24072503

RESUMO

An effective method for preventing bone loss is by promoting osteoblast differentiation and bone formation. While dexamethasone has been routinely used as a classical inducer for osteoblast differentiation, limitations have been observed with its usage, including its varied effects on expression of osteoblast genes in different species and its potentials in suppressing osteoblastic differentiation and mineralization. In this study, we assessed the ability of flavonoid icariin in enhancing differentiation and mineralization of cultured rat primary osteoblasts in the absence of dexamethasone. It was found that, compared to the non-stimulated control, icariin at 10(-5) M produced a higher alkaline phosphatase activity, more and larger areas of alkaline phosphatase-positive colonies (CFU-FALP) and mineralized nodules, more osteocalcin secretion and calcium deposition, higher levels of mRNA expression of alkaline phosphatase, osteoblastic transcription factors osterix and runt-related transcription factor 2, and collagen 1α, higher levels of protein expression of collagen 1α, alkaline phosphatese, osterix, and runt-related transcription factor 2. In addition, icariin at 10(-5) M was always more potent than dexamethasone at its optimal concentration of 10(-8) M on the above osteoblast differentiation and mineralization markers. Taken together, our studies demonstrated that icariin has a pronounced ability in promoting osteoblast differentiation in vitro in the absence of dexamethasone.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Flavonoides/farmacologia , Osteoblastos/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dexametasona/efeitos adversos , Osteoblastos/citologia , Osteogênese/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
19.
Zhongguo Zhong Yao Za Zhi ; 38(11): 1783-8, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24010296

RESUMO

OBJECTIVE: To compare the effect of icariin and genistein in the osteogenic differentiation of rat bone marrow stromal cells (rBMSC). METHOD: Rat marrow stromal cells were seperated in vitro, and the optimal concentration of genisten and icriin were screened. Genistein and icariin with the concentration of 1 x 10(-5) mol x L(-1) were adopted to intereven rBMSCs cultured in vitro. Alkaline phosphatase (ALP) was determined at 3, 6, 9, 12,15 d after intervention; calcified nodule was detected with alizarin red staining at 12 d; OXS, Runx-2, bone morphogenetic protein (BMP-2) and Collagen-I mRNA expression were observed with Real-time RT-PCR at 12, 24, 48, 72, 96 h. RESULT: Genistein and icariin with the concentration of 1 x 10(-5) mol x L(-1) could increase the activity of ALP and the content of Ca, regulate OXS, BMP-2, Runx-2 and Collagen-I mRNA expression. CONCLUSION: Icariin showed a stronger effect in improving the osteogenic differentiation of rat bone marrow stromal cells than genistein.


Assuntos
Flavonoides/farmacologia , Genisteína/farmacologia , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 35(4): 432-8, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23987492

RESUMO

OBJECTIVE: To investigate the molecular mechanisms of icariin (ICA) in regulating the bone formation of osteoblasts and the bone resorption of osteoclasts. METHODS: Primary osteoblast cell cultures were obtained from newborn rat calvarial. Calcified nodules were stained by alizarin red. The mRNA levels of osterix (OSX), runt-related transcription factor 2 (Runx-2), alkaline phosphatase (ALP), Collagen1, osteoprotegerin (OPG), and receptor activator of nuclear factor-ΚB ligand (RANKL) were analyzed by quantitative real-time RT-PCR, the protein levels of OPG, RANKL, and Collagen1 were examined by Western blotting, and the intracellular Ca(2+) concentration of osteoblasts was measured on a flow cytometer using the Cellquest program. RESULTS: Compared with control group, ICA markedly promoted bone formation by significant up-regulating the gene expressions of OSX, Runx-2,ALP, and Collagen1, the protein expression of Collagen1(all P<0.01), and the Ca(2+) concentration. Furthermore, ICA remarkably inhibited bone resorption by significant up-regulating the mRNA and protein expressions of OPG as well as the OPG/RANKL ratio. CONCLUSIONS: ICA could promote bone formation of osteoblasts through inducting the gene expressions of OSX,Runx-2, ALP and Collagen1, and the protein expressions of Collagen1, and by increasing the Ca (2+) concentration. Moreover, ICA could inhibit bone resorption of osteoclasts through regulating OPG/RANKL signal pathway.


Assuntos
Flavonoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Reabsorção Óssea , Células Cultivadas , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...